
Lecture 1

Part 1

Design by Contract (DbC):
Motivation & Terminology

Software Development Process

- Natural Language
 (incomplete, ambiguous, contradicting)
- Requirement Elicitation

- Blueprints
- Not necessarily executable & testable

- API Given
- Efficient (data structures & algorithms)
- Unit Tests

- Customer’s Acceptance
- Return?

-

ThEOUIREHH
I
DESI
I

ImpLEHENTATIT
↳

RELEASED

I’d like a working payment system.
Ideally, user can use it to pay their electricity bills and so on.
It should be easy to use and secure with a 4-phased
authentication (face, touch, verification code, password).

Informal Requirements

Incompleteness, Ambiguities, Contradictions

-

Roadmap of this Course
-

Client vs. Supplier in OOP
-

Lecture 1

Part 2

Supporting DbC in Java:
Preconditions,
Class Invariant,
Postconditions

A Simple Design Problem: Bank Accounts
-

Bank Accounts in Java: Version 1
-

Bank Accounts in Java: Version 1 Critique (1)

Supplier
Clientof

Bank Accounts in Java: Version 1 Critique (2)

Supplier
ClientE-

Bank Accounts in Java: Version 1 Critique (3)

Supplier
ClientE-

Bank Accounts in Java: Version 2
-

Bank Accounts in Java: Version 2 Critique (1) Compared
with
Version 1

Supplier
Client-8

Bank Accounts in Java: Version 2 Critique (2) Compared
with
Version 1

Supplier

ClientTo

Bank Accounts in Java: Version 2 Critique (3)
Compared
with
Version 1

Supplier

Client8

Bank Accounts in Java: Version 2 Critique (4)
Supplier

Client

Requirement

Console OutputEI

Bank Accounts in Java: Version 3
-

Bank Accounts in Java: Version 3 Critique (1) Compared
with
Version 2

Supplier
ClientE-

Bank Accounts in Java: Version 3 Critique (2)

When the amount is neither negative nor too large,
 is there any obligation on the supplier of withdraw?

-

Bank Accounts in Java: Version 4
with an evil supplier
-

Bank Accounts in Java: Version 4 Critique

Supplier
Client③

Bank Accounts in Java: Version 5
-

Bank Accounts in Java: Version 5 Critique
Compared
with
Version 4

Client
Supplier③

Design by Contract in Java

Supplier
Client8

Design by Contract in Eiffel
Contract View

Implementation View

Lecture 1

Part 3

DbC in Eiffel:
Runtime Contract Checking

Design by Contract in Eiffel

Implementation View

ensure
 init: balance = nb and owner = nnD

Runtime Monitoring of Contracts acc: ACCOUNT
create acc.make(a, n)
acc.withdraw(a)

-o

Precondition Violation: positive_balance

Supplier

Client€0

Precondition Violation:
non_negative_amount

Supplier

ClientE18

Precondition Violation:
affordable_amount

Supplier

ClientE18

Class Invariant Violation: positive_balance

Supplier

Client

Postcondition Violation: balance_deducted

Supplier
Clientto

Runtime Monitoring of Contracts
-

