Lecture 1
Part 1

Design by Contract (DbC):
Motivation & Terminology

Software Development Process

/ﬂggumm'r - Natural Language

(incomplete, ambiguous, contradicting)
6 - Requirement Elicitation
’VEQIM - Blueprints
6 - Not necessarily executable & testable
- API Given

I"‘YLEMWTATIO&’ - Efficient (data structures & algorithms)

6 - Unit Tests

- Customers Acceptance

«H—EAQE - Return?

Informal Requirements

, Ambiguities, Contradictions

Id like a working payment system.

Ideally, user can use it to pay their electricity bills and so on.
It should be easy to use and secure with a 4-phased
authentication (face, touch, verification code, password).

Roadmap of this Course

DeS'i_gn Design by Contract (DbC): E-L.F.Fe'l_

Class Invariant, Pre-/Post-condition
Abstract Data types (ADTs) Information Hiding Principle
Cohesion Principle Eiffel Testing Framework (ETF)
Single Choice Principle Abstraction (via Mathematical Models)
Open-Closed Principle Regression Testing
Design Document Acceptance Testing
Justified Design Decisions Void Safety

Generics

Architecture: Client-Supplier Relation Multiple Inheritance

Architecture: Inheritance Relation - SUb-Contrgctmg‘ _ ‘ .
Program to Interface Architectural Design Diagrams Specification: Predicates

Syntax: Implementation vs. Specification
agent expression, across constructs
expanded types, export status

Runtime Contract Checking

Debugger

Not to Implementation Contracts of Loops: Invariant & Variant

Modularity: Classes Program Correctness
Design Patterns Weakest Precondition (WP)

(Iterator, Singleton, State, Template, e Hoa.re Triples .
Composite, Visitor, Strategy Specification: Higher-Order Functions

Observer, Event-Driven Design)
Anti-Patterns

Code Reuse via Inheritance Axioms, Lemmas, Theorems

Substitutibility Equational Proofs
Polymorphism (esp. Polymorphic Collections) Proof by Contradiction (witness)
Type Casting

Static Typing, Dynamic Binding
Unit Testing

Client vs. Supplier in OOP

class Microwave { '

private boolean on; class MicrowaveUser ({
private boolean locked; public static void main(...) {
void power() {on = true;} | Microwave m = new Microwave();
void lock() {locked = true;} Object obj = |??7?|;
void heat (Object stuff) { m.power(); m.lock();]

E AgTcs RE Gh Jenien | m.heat (obj);
V) kG

Lecture 1
Part 2

Supporting DbC in Java:
Preconditions,

Class Invariant,
Postconditions

A Simple Desiqgn Problem: Bank Accounts

REQ1 || Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.

REQ2 | We may withdraw an integer amount from an account.

Bank Accounts in Java: Version 1

1 |public class AccountVI {

s private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

.2 public int getBalance() { return balance; }

6 public AccountVl (String owner, int balance) {

7 this.owner = owner; this.balance = balance;
8 }

9 public void withdraw(int amount) ({

10 this.balance = this.balance - amount;

11 }

12 public String toString() {

13 return owner + "’s current balance is: " + balance;
14 }

15 |}

Bank Accounts in Java: Version 1 Critique (1)

public class AccountVI1 {
private String owner;
private int balance;
public String getOwner() { return owner; }
public int getBalance() { return balance; }
public AccountVl (String owner, int balance) {
this.owner = owner; this.balance = balance;

}
public void withdraw(int amount) ({
this.balance = this.balance - amount;

1
2
3
4
5
6
74
8
9

}
public String toString() {

return owner + "’s current balance is: " + balance;

}

Supplier

public class BankAppV1 {
public static void main(String[] args) {
System.out.println("Create an account for Alan with balance -10:
AccountV1l alan = new AccountVl ("Alan", -10) ;

System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:
Alan’s current balance is: -10

Bank Accounts in Java: Version 1 Critique (2)

public class AccountV1 ({
private String owner;
private int balance;
public String getOwner() { return owner; }
public int getBalance() { return balance; }
public AccountVl (String owner, int balance) {
this.owner = owner; this.balance = balance;

}
public void withdraw(int amount) {
this.balance = this.balance - amount;

1
2
3
4
5
6
74
8
9

}
public String toString() {
return owner + "’s current balance is: " + balance;

}

°
l public class BankAppV1 {
Supplier

public static void main(String[] args) {
System.out.println("Create an account for Mark with balance 100:V);

AccountVl mark = new AccountVl("Mark", 100);
System.out.println(mark);
System.out.println("Withdraw -1000000 from Mark’s account:");

mark. withdraw (-1000000) ;
System.out.println(mark) ;

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Mark’s current balance is: 1000100

Bank Accounts in Java: Version 1 Critique (3)

}

public void withdraw(int amount) ({

10 this.balance = this.balance - amount;

11 }

12 public String toString() {

13 return owner + "’s current balance is: " + balance;

1 |public class AccountVl {

2 private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

5 public int getBalance() { return balance; }

6 public AccountVl (String owner, int balance) {

7 this.owner = owner; this.balance = balance;
8

9

public class BankAppV1l ({
public static void main(String[] args) {

System.out.println("Create an account for Tom with balance 100:"

AccountVl tom = new AccountVI ("Tom", 100);
System.out.println(tom);

System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw(150) ;

System.out.println(tom);

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Tom’s current balance is: -50

Bank Accounts in Java: Version 2

1 |[public class AccountV2 ({

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { + negated precondition

6 throw new BalanceNegativeException(); }

4 else { this.owner = owner; this.balance = balance; }
8 }

9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn
11 if ((amount < 0) { /* negated precondition +

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition
14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

Bank Accounts in Java: Version 2 Critique (1) 3?;:')““

public class AccountV2 { Version 1

public AccountV2(String owner, int balance) throws
BalanceNegativeException
{
if((balance < 0) { /* negated preconditic
throw new BalanceNegativeException(); }
else { this.owner = owner; this.balance = balance; }
}
public void withdraw(int amount) throws
WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptid

O©CoONOOO hWN —

if(amount < 0) { + negated precondit n
throw new WithdrawAmountNegativeException(); }
else if (balance < amount) { + negated precondit
throw new WithdrawAmountTooLargeException(); }
else { this.balance = this.balance - amount; }

I
|public class BankAppVz {

Supplier

1
2 public static void main(String[] args) {

3 System.out.println("Create an account for Alan with balance -10:
4 try {

5 AccountV2 alan = new AccountV2("Alan", -10) ;

6 System.out.println(alan);
il

8

9

0

}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");

1 }

Create an account for Alan with balance -10:
Illegal negative account balance.

Bank Accounts in Java

Version 2 Critique (2) Compared

with

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws
3 BalanceNegativeException

4 {

5 if((balance < 0) { /* negated precond

6 throw new BalanceNegativeException(); }

il else { this.owner = owner; this.balance = balance;
8 }

9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn
11 if ((amount < 0) { /* negated precondition *

d2 throw new WithdrawAmountNegativeException(); }
13 else if (balance < amount) { /* negated i
14 throw new WithdrawAmountTooLargeException(); }
15 else { this.balance = this.balance - amount; }

Supplier

Console Output:

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Illegal negative withdraw amount.

Version 1

}

Client

I
‘public class BankAppV2 {
public static void main(String[] args) {
System.out.println("Create an account for Mark with balance 100:
try {
AccountV2 mark new AccountV2("Mark",
System.out.println(mark);
System.out.println("Withdraw -1000000 from Mark’s account:");
mark. withdraw(-1000000) ;
System.out.println(mark);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}

catch

100) ;

(WithdrawAmountNegativeException wane) {
System.out.println("Illegal negative withdraw amount.");
}

catch

(WithdrawAmount TooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");
}

Compared

Bank Accounts in Java: Version 2 Critique (3) with
Version 1

public class AccountV2 {
public AccountV2(String owner, int balance) throws
BalanceNegativeException

if (balance < 0) | + negated precondi
throw new BalanceNegativeException(); }
else { this.owner = owner; this.balance = balance; }
}
public void withdraw(int amount) throws
10 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
1 if (amount < 0) { * nega] preconditi
12 throw new WithdrawAmountNegativeException(); }
13 else if (balance < amount) { . gated pre 1€
14 throw new WithdrawAmountTooLargeException(); }
15 else { this.balance = this.balance - amount;

©COoONOOO HWN =

r
|public class BankAppV2 {
public static void main(String[] args) {
System.out.println("Create an account for Tom with balance 100:"
try {
AccountV2 tom = new AccountV2("Tom", 100);
System.out.println(tom) ;
System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw(150) ;
System.out.println(tom);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}
catch (WithdrawAmountNegativeException wane) {
Console OUtpUt:) System.out.println("Illegal negative withdraw amount.");
Create an account for Tom with balance 100: catch (WithdrawAmountTooLargeException wane) {
Tom’ s current balance is: 100 System.out.println("Illegal too large withdraw amount.");
Withdraw 150 from Tom’s account: }
Illegal too large withdraw amount.

Supplier

0O NGO hWN =

Bank Accounts in Java: Version 2 Critique (4)

Requirement

REea1 [Each account is associated with the name of its owner|
(e.g., "Jim") and an integer balance that is always positive.

Console Output

Create an account for Jim with balance 100:
Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Jim’s current balance is: 0

1
2
3
4
o
6
7
8
9
0
1
2
3
4
5
6
74
8
9

°
1 |public class AccountV2 { suppller
2 public AccountV2(String owner, int balance) throws —
3 BalanceNegativeException
4 {
b if (balance < 0) { + negated precondition
6 throw new BalanceNegativeException(); }
V4 else { this.owner = owner; this.balance = balance; }
8 }
9 public void withdraw(int amount) throws
10 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {|
11 if (amount < 0) { + negated p))
12 throw new WithdrawAmountNegativeException(); }
13 else if (balance < amount) { + negated preconditio °
14 throw new WithdrawAmountTooLargeException(); } Cl'ent
15 else { this.balance = this.balance - amount; } I S B
16 } T
|pub1ic class BankAppV2 {

public static void main(String[] args) {

System.out.println("Create an account for Jim with balance 100:"

try {
AccountV2 Jjim new AccountV2("Jim",
System.out.println(jim);
System.out.println("Withdraw 100 from Jim’s account:");
jim. withdraw (100) ;
System.out.println(jim);

}

catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");

}

catch (WithdrawAmountNegativeException wane) {
System.out.println("Illegal negative withdraw amount.");

}

catch (WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

100);

Bank Accounts in Java: Version 3

1 |public class AccountV3 {

2 public AccountV3(String owner, int balance) throws

3 BalanceNegat iveException

4 {

5 if (balance < 0) { /* negated precondition =/

6 throw new BalanceNegativeException(); }

e else { this.owner = owner; this.balance = balance; }

8 ‘ assert this.getBalance() > 0 : "Invariant: positive balance"; |
9 }

10 public void withdraw(int amount) throws

11 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn
12 if (amount < 0) ({ + negated precondition x*/

13 throw new WithdrawAmountNegativeException(); }

14 else if (balance < amount) { + negated precondition

15 throw new WithdrawAmountTooLargeException(); }

16 else { this.balance = this.balance - amount; }

F [assert this.getBalance() > 0 : "Invariant: positive balance";
18 }

Bank Accounts in Java: Version 3 Critique (1)

e e g g g S
O NOOPARWN—=-0O O NOUTHAWN =

Supplier

public class AccountV3 {
public AccountV3(String owner,
BalanceNegativeException

int balance) throws
{
if (balance < 0) { /* negate 1
throw new BalanceNegatlveExceptlon(); }
else { this.owner = this.balance = balance; }

d prec

owner;

assert this.getBalance() > 0 : "Invariant: positive balance";

}
public void withdraw(int amount) throws
WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptic
if (amount < 0) { /+ gated precond 1
throw new WlthdrawAmountNegatlveExceptlon() }
else if (balance < amount) { * neg] precond
throw new WithdrawAmountTooLargeException(); }

else { this.balance = this.balance - amount; }

assert this.getBalance() > 0 : "Invariant: positive balance";

| public class BankAppV3

try { AccountV3 jim

) ¢

QWO NOOUHA WN =

—_

{

public static void main(String|]
System.out.println("Create an account for Jim with balance 100:"

System.out.println(jim);
System.out.println("Withdraw 100 from Jim’s account:");
jim. withdraw (100) ;

System.out.println(jim); }

Create an account for Jim with balance 100:
Jim’s current balance is:
Withdraw 100 from Jim’s account:
Exception in thread "main"

java.lang.AssertionError:

Compared
with
Version 2

args) |

new AccountV3("Jim", 100);

]

100

Invariant: positive balance

Bank Accounts in Java: Version 3 Critique (2)

1 |public class AccountV3 {

e public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptig
4 if (amount < 0) { C

5 throw new WithdrawAmountNegativeException(); }

6 else if (balance < amount) { : ole)

7 throw new WithdrawAmountTooLargeException(); }

8 else { this.balance = this.balance - amount; }

9 | assert this.getBalance() > 0 : "Invariant: positive balance";

b

|

When the amount is neither negative nor too large,

is there any obligation on the supplier of withdraw?

Bank Accounts in Java: Version 4

— —

with an evil supplier

1 |public class AccountV4 ({

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException
4 { if (amount < 0) { /* negated precondition

2] throw new WithdrawAmountNegativeException(); }

6 else if (balance < amount) { + negated preconditi
7 throw new WithdrawAmountTooLargeException(); }

8 else { « WRONT IMPLEMENTATION

9 \ this.balance = this.balance + amount; }

0 assert this.getBalance() > 0

1 owner + "Invariant: positive balance"; }

Bank Accounts in Java: Version 4 Critique

public class AccountV4 {
public void withdraw(int amount) throws
WithdrawAmountNegativeException, WithdrawAmountTooLargeException
{ if (amount < 0) { /* negated precondition

throw new WithdrawAmountNegativeException(); }
else if (balance < amount) { + negated precondi

throw new WithdrawAmountTooLargeException(); }
else { /* WRONT IMPLEMENTATION

this.balance = this.balance + amount; }
assert this.getBalance() > O

o
owner + "Invariant: positive balance"; } Cl|en+

- O O ONOOCOPPWN =

—h

|public class BankAppV4 {
public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 10
try { AccountV4 3jeremy = new AccountV4("Jeremy", 100);
System.out.println(jeremy) ;
System.out.println("Withdraw 50 from Jeremy’s account:");
jeremy. withdraw (50) ;

System.out.println(jeremy); }

QWO N WN —

i

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Jeremy’s current balance is: 150

Bank Accounts in Java: Version 5

—_—
COWONOOOLHA WN =

.
N —

public class AccountV5 {
public void withdraw(int amount) throws

WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptid

int oldBalance = this.balance;

if (amount < 0) { + negated precondition

throw new WithdrawAmountNegativeException(); }

else if (balance < amount) { + negat

Y Drec.
1 ¢

‘y‘(]“'r y

throw new WithdrawAmountTooLargeException(); }
else { this.balance = this.balance - amount; }

assert this.getBalance() > 0 :"Invariant:

positive balance";

assert this.getBalance() == oldBalance - amount

"Postcondition: balance deducted";

}

n

. .] Compared
Bank Accounts in Java: Version 5 Critique ith

Version 4

public class AccountV5 {
public void withdraw(int amount) throws

withdrawAmountNegativeException, WithdrawAmountTooLargeExceptid
int oldBalance = this.balance;

if (amount < 0) { /* negated precondition
throw new WithdrawAmountNegativeException(); }

else if (balance < amount) { + negated precond
throw new WithdrawAmountTooLargeException(); }

else { this.balance = this.balance - amount; }

assert this.getBalance() > 0 :"Invariant: positive balance";

©CoONOOOL A~ W =

assert this.getBalance() == oldBalance - amount

"Postcondition: balance deducted"; }

|public class BankAppV5 {

public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 10

Supplier

try { AccountV5 jeremy = new AccountV5("Jeremy", 100);
System.out.println(jeremy) ;
System.out.println("Withdraw 50 from Jeremy’s account:");
jeremy. withdraw (50) ;
System.out.println(jeremy); }

catch statements same as thi

O WO NOOOOHA WN =

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Exception in thread "main"
java.lang.AssertionError: Postcondition: balance deducted

Design by Contract in Java

lpublic class AccountV5 {
public void withdraw(int amount) throws
WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptic
int oldBalance = this.balance;

if (amount < 0) { + negated
throw new WithdrawAmountNegativeException(); }

else if (balance < amount) ({
throw new WithdrawAmountTooLargeException(); }
else { this.balance = this.balance - amount; }
assert this.getBalance() > 0 :"Invariant: positive balance";

assert this.getBalance() == oldBalance - amount
"Postcondition: balance deducted"; Clien*'-

l. public static void main(String[] args) {
supp ler System.out.println("Create an account for Jim with balance 100:"
|) try {
AccountV2 jim = new AccountV2("Jim", 100);
System.out.println(jim);
System.out.println("Withdraw 100 from Jim’s account:");
jim. withdraw (100) ;
System.out.println(jim);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}
catch (WithdrawAmountNegativeException wane) {
System.out.println("Illegal negative withdraw amount.");
}
catch (WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

Design by Contract in Eiffel

Contract View

class ACCOUNT
create
make
feature Attributes
owner : STRING
balance INTEGER
feature Constructors
make (nn: STRING; nb: INTEGER)
require -- precondition
positive_balance: nb > 0
end
feature Commands
class ACCOUNT withdraw(amount: INTEGER)
Creace require -- prec ion
faie L L non_negative_amount: amount =0
feature - A\ttributes
B STRING affordable_amount: amount <= balance 1€ tic,
balance : INTEGER ensure -—- postcondi
feature Constructors balance_deducted: balance = old balance - amount
make (nn: STRING; nb: INTEGER) end
require precondition invariant -- class invariant
positive_balance: nb > 0 positive_balance: balance > 0
ce end
owner := nn
balance := nb
end
feature and
withdraw(amount: INTEGER)
require -- precondition
non_negative_amount: amount > 0
affordable_amount: amount <= balance problematic
do
balance := balance - amount
ensure postcondit on
balance_deducted: balance = old balance - amount ° °
Implementation View
invariant invar
positive_balance: balance > 0 =
snd

Lecture 1
Part 3

DbC in Eiffel:
Runtime Contract Checking

Design by Contract in Eiffel

Implementation View

class ACCOUNT
create
make
feature tributes
owner : STRING
balance : INTEGER
feature onstructors
make (nn: STRING; nb: INTEGER)
require precondition
positive balance: nb > 0
do
owner := nn

balance := nb
end ensure
feature init: balance = nb and owner = nn
withdraw(amount: INTEGER)
require precondition
non_negative_amount: amount > 0
affordable _amount: amount <= balance
do
balance := balance - amount
ensure postcondition
balance_deducted: balance = old balance - amount
end
invariant -- class invariant
positive_balance: balance > 0
end

Runtime Monitoring of Contracts | acc: ACCOUNT

create acc.make(a, n)
acc.withdraw(a)

postcond_withdraw:
acc.balance = old acc.balance - a and acc.owner ~ old acc.owner

STATE:
balance
owner

not (account _inv) not (precond_withdraw) . not (postcond withdraw)

A4

v

Precondition

Postcondition

Violation Violation

A
not (postcond_make)

precond_make: execute
create {fACCOUNT} acc.make(a,n) -~. a>0 - -, create {ACCOUNT} acc.make(a, n)

not (precond_make)
call

. N l-.‘
‘ b eeeccceccceeeee >, I I I I I A A R A > 0
..t ~.t ="

postcond_make:
acc.balance = a and acc.owner = n

Precondition Violation: positive_balance

a |0 APPLICATION 7| @ ACCOUNT I e IO
2 Status = Implicit exception pending
Fealire e e Em\mw’ balance: PRECONDITION_VIOLATION mm»(D
P[F ez izt AVA B #
=laT view of feature ' make' of class ACCOUNT :‘;:::er Illxrét?oaus;T Ime e l .
k . APPLICATION 1
make (nn: STRING_8; nb: INTEGER_32) mexe
I require
B (positive_balance: nb >= 0
do
J owner = nn
2 balance := nb
2 end
° class ACCOUNT
Supplier [~
h ool A LD _Jd % make
feature Attributes
owner STRING
° balance INTEGER
‘ llenf feature ‘onstructors
—_—_— make (nn: STRING; nb: INTEGER)
require precondition
class BANK_APP positive_balance: nb > 0
inherit end
ARGUMENTS feature - Commands
create withdraw (amount: INTEGER)
make require precondition
feature —- Tnitialization non_negative_amount: amount » 0
malce affordable_amount: amount <= balance problemeé
oo PO ensure postcondition
~— Run application. balance_deducted: balance = old balance - amount
local and
alan: ACCOUNT invariant class invariant
do positive_balance: balance > 0
-— A precondition violation with tagjend
create {ACCOUNT} alan.make ("Alan", -10)

end
end

Precondition Violation:

J |0 APPLICATION ;1| @ ACCOUNT

o0 RO ewa R

bank ACCOUNT withdraw < » % O X

Status = Implicit exception pending

. featire {non_negative_amount: PRECONDITION_VIOLATION raised)
non negat've amounf !E Ialyzipe ..: HEAVAB o In Feature |ln Class |Fromclass | @
 c— c— Flat view of feature "withdraw' of class ACCOUNT _ b withdraw + ACCOUNT 1
=T - - make - APPLICATION 2
withdraw (amount: INTEGER_32)
require
(non_negative_amount: amount >= 0)
g affordable_amount: amount <= balance
do
2 balance := balance - amount
ensure
2 balance = old balance - amount
2 end
—
class ACCOUNT
o create
Supplier| ™ "
L feature -- Attributes
owner STRING
. balance INTEGER
< I'enf feature nstructors
-4 lb 4588 make (nn: STRING; nb: INTEGER)
require precondition
class BANK_APP positive_balance: nb > 0
inherit end
ARGUMENTS feature - Cc
create w1thdraw(ar.nount: INTEGER}
require ——- precondition
make £y .
o)) non_negative_amount: amount » 0
feature -- Initialization affordable_amount: amount <= balance problema
make ensure postcondition
-— Run application. balance_deducted: balance = old balance - amount
local : , exid
invariant class invariant
mark: ACCOUNT positive_balance: balance > 0
do end
create {ACCOUNT} mark.make ("Mark", 100)
—-— A precondition violation with tag "nc

mark.withdraw(-1000000)
end
end

Precondition Violation: 5
affordable_amount

@ APPLICATION ::| @ ACCOUNT

ez alztal VA B
Flat view of feature " withdraw' of class ACCOUNT

withdraw (amount: INTEGER_32)

20 call stack

Foowewa

In Feature | In Class
| » withdraw . ACCOUNT
| make s APPLICATION

bank ACCOUNT withdraw < b # O &3] aaius = Implicit exception pendi
{3"0((13[”973(“0!](\! PRECONDITION_VIOLATION raised

| From Class | @
2

2

require
non neqative amount: amount >= 0
® (affordable_amount: amount <= balance)
do
o balance := balance - amount =
ensure :
© balance = old balance - amount
© end =l
° class ACCOUNT
Supplier [
0 make
feature Attributes
owner STRING
M balance : INTEGER
'en feature uctors
make (nn: STRING; nb: INTEGER)
class BANK_APP require -- precondition
inherit positive_balance: nb > 0
end
ARGUMENTS feature - Co S
create withdraw(amount: INTEGER)
make require precondition
I e ; g non_negative_amount: amount 2 0
feature Initialization affordable_amount: amount <= balance problen
make ensure postcondition
-— Run application. balance_deducted: balance = old balance - amount
local : . end
invariant class 1nvariant
tom: ACCOUNT positive_balance: balance > 0
do end
create {ACCOUNT} tom.make ("Tom", 100)

-— A precondition violation with tag
tom.withdraw(150)
end
end

"

Class Invariant Violation: positive_balance

B |o APPLICATION ml @ ACCOUNT |

,
o0 ELdOdewarOR

bank ACCOUNT _invariant <4 » % O3

e positive_balance: INVARIANT_VIOLATION raised o
. g t= 2 =8 g ®
‘!E R e gaics ": 5“ van B Y Festore iln Class iFrom Class i '
Flat view of feature " _invariant' of class ACCOUNT > _invariant - ACCOUNT 0
o withdraw ACCOUNT 5
[posmve_balance: balance > 0] make APPLICATION 2
[class ACCOUNT
Supplier |-
0 make
feature - Attributes
owner STRING
° balance : INTEGER
Cllenf feature -- Constructors
=1 1 | make (nn: STRING; nb: INTEGER)
class BANK_APP require —-— precondltlon
inharit positive_balance: nb > 0
end
ARGUMENTS feature - Cor s
create withdraw(amount: INTEGER)
make require precondition
feature - Initialization non_negative_amount: amount » 0
make affordable_amount: amount <= balance problema
-— Run application. ensure —- postcondition
local balance_deducted: balance = old balance - amount
jim: ACCOUNT _ _ end v
do invariant - class invariant
. positive_balance: balance > 0
create {ACCOUNT} tom.make ("Jim", 100) J. 4

jim.withdraw(100)
-— A class invariant violat
end

end

"positive_balance"

Postcondition Violation: balance_deducted

0 |@ aeeuication |0Accoun1'zz] T o
E— bank ACCOUNT withdraw < » ¥ O 3 u&w malpilcit excaption pend
balance_deducted: POSTCONDITION_VIOLATION raised
‘!E I SVAR o In Feature IIn Class IFrom Class | @
Flat view of feature *withdraw' of class ACCOUNT » withdraw » ACCOUNT '
o affordable_amount: amount <= balance al make . APPLICATION 12
do
o balance := balance + amount
en
s (balance_deducted: balance = old balance - amount)
© end
® class ACCOUNT
Supplier |~
make
il feature tributes
° owner STRING
Cl'enf balance : INTEGER
—_— L feature onstructors:
make (nn: STRING; nb: INTEGER)
class BANK_APP require S rerondit
inherit ARGUMENTS positive_balance: nb > 0
create make end
feature —- Initiali feature, ammangs
withdraw(amount: INTEGER)
make require prec lition
-— Run aPPliCﬂinYT- non_negative_amount: amount 2 0
local affordable_amount: amount <= balance problema
jeremy: ACCOUNT Shsure ot o
do balance_deducted: balance = old balance - amount
B end
-— Faulty implementation of withdraw in ACCOU}jinvariant class invariant
—-— balance := balance + amount positive_balance: balance > 0

create {ACCOUNT} jeremy.make ("Jeremy", 100)

jeremy.withdraw(150)

violati

ion

-— A postcondit
end

end

===

end

"balance_deducted"”

Runtime Monitoring of Contracts

postcond_f:

Qf
a_inv: call precond_f: o
SIATE: I af(..) ... Pf .
attributes of f------ >‘—>; R >
not Pf .

Postcondition
Violation

Precondition

Violation
. A
i : not Qm
not Pm: Q :
call + precond_make: execute '
create {A} a.make(...) -, Pm --. create {A} a.make(...) --.
: Rl Suais mmoos dikince » Bl s e mcmin Biifinn o scavain Somie >
postcond_make:

Qm

